Reprinted from:

AAMSI CONGRESS 33

Proceedings of the Congress
on Medical Informatics

Supporting Sponsor:
Kaiser Foundation Hospitals

Edited by:
DONALD A.B. LINDBERG, M.D., Sc.D.

Information Science Group
University of Missouri
Columbia, Missouri

EDMUND E. VAN BRUNT, M.D.

Kaiser-Permanente Medical Care Program
Oakland, California

MICHAEL A. JENKIN, M.D.
Computer Sciences Corporation
Herndon, Virginia

Volume 1
ISSN 0737-4194

Copyright © 1983
American Association for Medical Systems and Informatics

Al rights teserved. This book or any part thereof may not be reproduced in any form

without the permission of the publisher.

American Association for Medical Systems and Informatics, Publishers
Suite 402, 4405 East-West Highway, Bethesda, MD 20814 301/657-4142

Printed in the United States of America

ENCOUNTER DATA SYSTEM (EDS) — AN IIS CASE STUDY

Daniel S. Keller
Anthony I. Wasserman

Section on Medical Information Science
University of California
San Francisco, CA 94143

A software system has been developed for a dermatology clinic’s
administrative data management. The system performs data entry
and retrieval for generation of reports regarding
patient/physician encounters, diagnoses made, and clinical
procedures conducted. The virtues of the system stem from the
"componentry" approach to software development, and from the high
quality of the components wused. Such systems can thus be
constructed quickly and operated at low cost and are very flexible
in the types of functions which they can perform.

Interactive Information Systems (IIS)

Interactive information systems are an important class of computer applications [1].
In an II$, users enter data, typically via CKT terminals. Later these data can be
recalled for editing, or for organization into reports and displays. Users are thus
provided with conversationmal access to databases. Such systems can be described as
having three components: a user/program dialogue, a database, and operations mapping
the dialogue onto the database [2].

Because IISs are so common, we have sought to develop software components that
facilitate their design and construction. This paper describes the component
approach and its benefits. Space limitations prohibit either a lengthy exposition
of the tools or the application systems built with them.

Componentry Software Methodology

Software compouentry is an approach to systems development which makes use of an
inventory of standardized parts. Programmers need not rewrite portions of code
which perform similar functions, but may instead comnstruct systems from tested,
general-purpose program components. In contrast to ‘'programming—in-the~-small'
(conventional programming) this approach has been termed 'programming-in-the-large"
[3]. The primary advantage is reduced development and validation time. Another
advantage is the "decision-hiding" [4] that can be achieved; implementors are
relieved of many detailed decisions such as data structure design. A disadvantage
is that such generalized elements are not optimized for each specific use to which
they are put.

EDS - An IIS Case Study

The Encounter Data System (EDS) is undergoing installation at UCSF’'s Dermatology
Clinic as an administrative tool. It is a specialized software system constructed
from an inventory of standard program parts. This approach is comsisteut with the
philosophy of UNIXT™ [5§, the operating system on which EDS runs. UNIX provides a

Unix is a trademark of Bell Laboratories.

149

D.S.Keller ,A.I.Wasserman

number of sexrvices to EDS and hence might be considered one of the components.
These services include the "pipe" wmechanism for interprocess communication, and the
"termcap" terminal capability database which enables EDS to operate independently of
the hardware characteristics of any specific terminal.

The other components of EDS are "editform", "Ingres", and "driver". Editform is a
set of routines which handle the screen/keyboard user interaction. It provides
messages, prompts, and data verification. Editform control files (termed
"formfiles") can be prepared in minutes, allowing configuration for different
applications. A form is an electronic embodiment of a paper form. It is a
formalized questionnaire containing blanks ('"fields") to be filled in. Once a form
has been filled in, the data are sent to the database to be stored. Later, they may
be recalled and modified.

Table 1 shows a sample formfile. Formfiles describe data entry screens and
associated database actions. They consist of lines of various kinds. Each line is
an ordered list of colon-delimited descriptive items. Formfile lines are described
in Table 2.

Form for entering a new encounter.

i

APPEND:encounter

GET:unitno

GET:visitdate

H:0,0:Unit number <unitno’|"Enter new encounter.|Visit date <visitdate)>
::0,U,b:1tencounter:unitno:unitno:123456 :LFK:LFK::
::0,0,15:T:encounter:visitdate:visitdate::D:D::

:Encounter type:4,30,4::encounter:enctype::699:IV:IV:100:699-902

100:verify encounter type code:krror —— unknown encounter type code.
:Physician code:6,30,4::encounter:mdno:mdno:P666:TV:TV:110:
11G:verify physician on-file:krror -— unknown physician code.

:Next visit date:8,30,15::encounter:nextvisdat:::D:D::

:Special case code letter:10,3U,l::encounter:speccase::Z:TF:TF::
T:10,20:Comments or other descriptive text.
::11,0,48::encounter:text: :Prescribed drug X.:TV:TV::

Table 1 -- A typical formfile.

Tngres [6] is a relational database management system which handles the storage and
retrieval of data received from editform. Ingres runs as the "backend" of an
interactive information system, where editform collects the input at the "frontend".
Ingres provides for the definition of permanent and temporary relatiomns, for
relational calculus-like operations of selection, projection, and join, and for
assignments to individual attributes within a relation.

"Driver" is a program that permits editform to talk to Ingres. Different versions
of driver have been written which interface to to other databases and to ordinary
files. The exact configuration of components for any particular installation varies
according to availability at each host site. 1In a typical version, driver and
editform run as a single process and communicate with Ingres via the Unix pipe
mechanism.

Tne advantage of the component approach is now apparent. There is no need to
perform extensive physical database design; all that is needed is the logical
database design expressed as a set of normalized relations. There is no need to
program all of the user/proyram input/output operations; these are simply defined as
editform inputs and outputs.

Because editform and Ingres have been thoroughly tested and extensively used,
systems built with these tools have far fewer errors than those built in a
traditiconal manner. Development time is significantly reduced, since mnuch of the
system specification can be captured with little coding effort.

150

f

e T

Encounter Data System (EDS) - an IIS case study

starts

with action description

comment Editform ignores these lines.

H header literal and variable text to appear in the
header area of the screen. The "|" characters
delimit an item to be centered. The """
character causes the item to be displayed in
reverse video.

T text literal and variable text to appear in the
data—entry area of the screen.

field def Defines a data—entry field. These lines
consist of 11 items. Only the second is not
optional. These items are: displayed label;
coordinates and width; whether invisible,
required, or read-only; the relation in the
database to which the datum belongs; the name
of the attribute within the relation; the name
of the variable within the form which contains
the datum; an example in case the user asks
for help; the display format (listed in Table
3); the storage format; verification routine
number(s); and numerical validity range.

PRE form preproc Actions to perform prior to editing fields, e.g.
database retrievals, variable initialization.

POST form postproc Actions teo perform when the user is domne
entering/editing.

integer proc def Defines a form preproc, form postproc, or
field verification routine. A string is
provided for display in the message area of
the screen in case the routine fails.

GET fetch ifc Tells Editform to fetch from the interform
communication (ifc) area a variable which was
stored there by a SAVE in a previous form.

SAVE store ifc Tells editform to store into the interform
communication area (ifc) some variable for use
by a later form.

APPEND d.b.append Appends a record frum the edited form into the
named relation in the database.

UPDATE d.b.replace Replaces a record from the edited form into the
named relation in the database.

Table 2 —— The kinds of lines which can appear in formfiles.

In this implementation, the data stored are of eight types: patients, encounters,
diagnoses found, clinical procedures conducted, doctors, a table of diagnosis codes,
a table of procedure codes, and a table of special case codes. A given patient may
have several encounters, each with perhaps a different physician, different
diagnoses, different clinical procedures, and so forth. Alsc, an encounter may be
flagged with a special case code, for example if it were of interest to a particular
research project.

Diagnoses are entered using the SNODERM [7] encoding scheme. Clinical procedures
are entered according to the University of California’s billing codes.

151

D.S.Reller ,A.I.Wasserman

code data type code data type
An choice of one or more items L long integer
from a list
P phone number; area codes
Cn choice of a single item and extensions handled
from a list
T text
D date
Y yes/no
F floating-point number
$ money
I integer
modifiers
F fixed length U convert to upper case
K relational key \) variable length
Table 3 —- Display/storage formats.
Users conduct three kinds of activities: entering new data, editing already—

existing data, and generating reports. In all cases, interaction is via screens and
fields supported by editform according to form files. In the former cases, the
screen consists of sets of fields which correspond to the stored data items
themselves. In the latter case, the screen consists of fields through which the
user specifies choices of data items which are to appear in the reports, and fields
which specify data extraction criteria (the subset of the data which is actually to
appear in the reports.)

Evaluaticon of IISs

Quantitative evalustion of such systems includes their initial cost, how much it
costs to use them, and issues of size and speed — how much data can be handled,
what is the response time, how many users can be supported simultaneously, and so
forth. Qualitative evaluation addresses such questions as how difficult they are to
use, how useful are the reports which can be generated, and how difficult is it to
change the capabilities of the system or add new ones. The remainder of this paper
addresses the qualitative issues.

Perhaps the most dramatic proof of the user-friendliness of EDS is that a tvo—page
user manual suffices to explain its complete operation by personnel not trained in
computer use. The repertory of commands which a user must master ’consists of_ a
half-dozen single-keystroke functions. This contributes to EDS’s low operating
cost.

User-friendliness requires a high level of interaction. Users may, at any time,
interrogate the system as to what is going on in general, or what is the format and
content of a data field, or what is an example of the expected datum, or what are
the available commands. It is hard to get lost.

Validation is an intrinsic part of the data entry process. Data are rejected (with
explanatory messages) when they are out of range or logically conflict Wi?h other
data. This quality control contributes to the accuracy of the reports which are
ultimately produced.

In the context of the relational model of data, there are five levels of wvalidation
that can be conducted. First, there is the syntactic level. For example, no non-
digits can be entered into a numeric field, and phone numbers must adhere to a
defined format. The other four levels are semantic. The second level enforces
external knowledge. For example, there is no such date as January 32nd; or some

152

Encounter Data System (EDS) — an IIS case study

date might be required to precede today’s date. The third level involves cross-
checking between two or more data items in the currently-entered record. For
example, one number may not be allowed to exceed another. Another example would be
to entirely disallow entry of data into a certain field depending on the value in
some other field; if clinical procedure is not "excision'", then do not accept
anything in the "method of closure" field. The remaining two levels involve
database lookups as part of the verification precess. The fourth level cross—checks
against other records within the same relation. For example, it may be desired to
verify that some value does not exceed the highest such value. Finally, the fifth
level of checking checks against other relations. A diagnosis might be accepted
into the "found diagnoses" relation only if it is present in the table of diagnosis
codes, which is stored as a separate relation. Another example of this level would
be to wverify that a patient’s encounter date does not pre—date his birth date; a
datum from the encounter relation is checked against one from the patient relatiom.

The reports which EDS generates are totally general as to extraction and reporting
criteria. Any data element or combination may be used as a selector. For example,
a researcher might want a comprehensive display of all males over the age of 40 with
a certain disease. An administrator might want to know how many of a certain test
were ordered in a given month. Decisions about which reports are desired mneed not
be made as part of the system design process. This would freeze the system’s
reporting capabilities. Rather, the report-generating procedure is conducted in the
same mnanner as data entry. Reports can be requested on the fly. New ones can be
created as they are conceived and as new requirements become evident.

It is a straightforward process to modify screen layouts, data collection, and data
presentation to accommodate changing needs. The procedure for accomplishing this is
to edit the form files as with any on-line document, and execute some Ingres
commands (with Ingres in its standalone mode) to modify storage formats.

Conclusion

The component method can cheaply produce IISs. These systems can easily and at low
cost provide administrative and clinical data for health-care providers. We have
seen that it is easily possible to take the editform and Ingres tools and apply them
to a variety of applications. Furthermore, these tools are compact and can run on
small computers, making the tools even more generally applicable.

References

{1] Wasserman, A.I. ane D.T. Shewmake, "Rapid Prototyping of Interactive
Information Systems'", Proceedings 2nd SIGSOFT Symposium —— Workshop on Rapid
Prototyping, Columbia, MD, April, 1982. o

L2] Wasserman, A.I. ana S.K. Stinson, "A Specification Method for Interactive
Information Systems," Proceedings —- Specifications of Reliable Software, IEEE
Computer Society, Cambridge, MA, 1978, pp. 68-79.

13] DeRemer, F. and H. Kron, "Programming-in-the-Large Versus Programming-in—the-
Small", IEEE Transactions on Software Engineering, SE-2, 2, pp. 80-86.

{4] Parnas, D.L., "On the Criteria To Be Used in Decomposing Systems into Modules",
Communications of the ACM, 15, 12, pp. 1053-1058.

[5] Ritchie, D.M. and K. Thompson, "The Unix Time-Sharing System,"” Communications
of the ACM, 17, 7, pp. 375-385.

[6] Stonebraker, M., E. Wong, and P. Kreps, "The Design and Implementation of
INGRES"™, ACM Transactions on Database Systems, DB-1, 3, pp. 189-222.

[7} Brown, C.D. MD, ed., SNODERM. Baltimore: Waverly Press, 1978.

153

